Learn
Paper Models
Flyers, Posters, & Calendars
Videos
Interactive Animations
Coloring Books
Structural Biology Highlights
3D Printing
Exploring the Structural Biology of Cancer
Exploring the Structural Biology of Bioenergy
Exploring the Structural Biology of Viruses
Exploring the Structural Biology of Health and Nutrition
Exploring the Structural Biology of Evolution
Exploring Structural Biology with Computed Structure Models (CSMs)
COVID-19 Pandemic Resources
Other Resources

A Molecular View of HIV Therapy

After HIV enters a T-cell, three enzymes play essential roles in the life cycle of the virus. Reverse transcriptase copies the viral RNA genome and makes a DNA copy. Integrase inserts this viral DNA into the cell’s DNA. In the last steps of the viral life cycle, HIV protease cuts HIV proteins into their functional parts. Current antiretroviral drugs target these three enzymes, hindering the virus reproduction. However, enzymes can mutate and become drug resistant, making it vital to use a combination of different drugs that target multiple enzymes. This animation was created using many PDB entries for Reverse Transcriptase (3hvt, 3dlk, 3v6d, 3v4i, 3klg, 3v81), Integrase (3os1, 3os0, 3oya), Protease (3pj6, 1kj4, 1hxb, 2az9, 2azc), HIV Polyprotein (1l6n), Capsid Protein (2m8l), and Matrix Protein (1tam).