Molecule of the Month: MHC I Peptide Loading Complex
Several steps of quality control optimize the peptides that are displayed by MHC I.
Complex Loading
PLC in Action
Double Check
Trimming Peptides
Exploring the Structure
MHC I Complexes
By comparing the structures of MHC I bound to a peptide versus MHC I bound to TAPBPR, we can see how TAPBPR proofreads the complex. In the peptide complex (PDB ID 1hoc), two alpha helices in MHC I tightly flank the peptide, hugging it along its entire length. In two similar structures of the TAPBPR complex (PDB ID 5wer and PDB ID 5opi), however, notice that the alpha helices are slightly separated. Optimal peptides need to bind strongly enough to induce MHC I to shift to the tighter, narrow groove. To explore these structures in more detail, click on the image for an interactive JSmol view.
Topics for Further Discussion
- Several of the structures shown here do not include transmembrane segments for some of the protein. To understand the portions that are missing, you can view the Group Sequence page for each protein, such as the page for tapasin.
- You can look at a series of structures of TmrAB, a bacterial transporter similar to TAP, to see the many conformations that are needed for transport. For example, take a look at the inward-open conformation in PDB ID 6ran and outward-open conformation in PDB ID 6rah.
- To see how these peptides are recognized by the immune system, visit the Molecule of the Month on T-cell receptors.
Related PDB-101 Resources
- Browse Immune System
References
- 7qpd: Domnick, A., Winter, C., Susac, L., Hennecke, L., Hensen, M., Zitzmann, N., Trowitzsch, S., Thomas, C., Tampe, R. (2022) Molecular basis of MHC I quality control in the peptide loading complex. Nat Commun 13: 4701-4701
- Klunk, J., Vilgalys, T.P., Demeure, C.E., Cheng, X., Shiratori, M., Madej, J., Beau, R., Elli, D., Patino, M.I., Redfern, R., DeWitte, S.N., Gamble, J.A., Boldsen, J.L., Carmichael, A., Varlik, N., Eaton, K., Grenier, J.C., Golding, G.B., Devault, A., Rouillard, J.M., Yotova, V., Sindeaux, R., Ye, C.J., Bikaran, M., Dumaine, A., Brinkworth, J.F., Missiakas, D., Rouleau, G.A, Steinrucken, M., Pizarro-Cerda, J., Poinar, H.N., Barreiro, L.B. (2022) Evolution of immune genes is associated with the Black Death. Nature 611:312-319
- Trowitzsch, S., Tampe, R. (2020) Multifunctional chaperone and quality control complexes in adaptive immunity. Annu Rev Biophys 49:135-161
- Thomas, C., Tampe, R. (2019) MHC I chaperone complexes shaping immunity. Curr Op Immunol 58:9-15.
- Blees, A., Januliene, D., Hofmann, T., Koller, N., Schmidt, C., Trowitzsch, S., Moeller, A., Tampe, R. (2017) Structure of the human MHC-I peptide-loading complex. Nature 551: 525-528
- 5mzo: Roversi, P., Marti, L., Caputo, A.T., Alonzi, D.S., Hill, J.C., Dent, K.C., Kumar, A., Levasseur, M.D., Lia, A., Waksman, T., Basu, S., Soto Albrecht, Y., Qian, K., McIvor, J.P., Lipp, C.B., Siliqi, D., Vasiljevic, S., Mohammed, S., Lukacik, P., Walsh, M.A., Santino, A., Zitzmann, N. (2017) Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint. Proc Natl Acad Sci U S A 114: 8544-8549
- 5wer: Jiang, J., Natarajan, K., Boyd, L.F., Morozov, G.I., Mage, M.G., and Margulies, D.H. (2017). Crystal structure of a TAPBPR-MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science 358, 1064-1068
- 5opi: Thomas, C., Tampe, R. (2017) Structure of the TAPBPR-MHC I complex defines the mechanism of peptide loading and editing. Science 358: 1060-1064
- 5u1d: Oldham, M.L., Grigorieff, N., Chen, J. (2016) Structure of the transporter associated with antigen processing trapped by herpes simplex virus. Elife 5: e21829
- 5ab0: Mpakali, A., Giastas, P., Mathioudakis, N., Mavridis, I.M., Saridakis, E., Stratikos, E. (2015) Structural basis for antigenic peptide recognition and processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J Biol Chem 290: 26021-26032
- 1hoc: Young, A.C., Zhang, W., Sacchettini, J.C., Nathenson, S.G. (1994) The three-dimensional structure of H-2Db at 2.4 A resolution: implications for antigen-determinant selection Cell 76: 39-50
April 2023, David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2023_4